4.1 NOTES: Calculating Compound Interest:

$$
\mathrm{A}=\mathrm{P}\left(1+\frac{r}{n}\right)^{\mathrm{nt}}
$$

$$
\sim 5 \%=.05
$$

A = final amount
$\mathbf{P}=$ principal (initial investment)
$r=$ annual (yearly) interest rate
$\mathrm{n}=$ \# times interest is paid per year
(compounded)
t = \# of years
\rightarrow See video in e-book for a further explanation of compound interest.

4.1 Notes: Exponential Functions

The exponential function with base a is defined for all real numbers \mathbf{x} by:

$$
f(x)=a^{x}, \text { where } \mathrm{a}>0 \text { and } \mathrm{a} \neq 1
$$

\rightarrow See video in e-book for introduction about exponential functions and an exploration link.

The line $y=0$ (x-axis) is an asymptote and the y-intercept is at $(0,1)$.

$f(x)=a^{x}$,
where $\mathrm{a}>1$

$f(x)=a^{x}$ for $a>1$
$f(x)=a^{x}$,
where $0>a>1$

$f(x)=a^{x}$ for $0<a<1$

Domain is $(-\infty, \infty)$ and Range is $(0, \infty)$

Calculate values and plot points to

 sketch a graph:Reminder: $3^{-2}=\frac{1}{3^{2}}=\frac{1}{9}$

These graphs are reflections of each other across the y-axis:

Writing an equation given the graph:

Example 1:
Given: $\mathrm{f}(\mathrm{x})=\mathrm{a}^{x}$ and $\mathrm{a}>0$.
From the graph $x=2$ and $y=25$ [same as $f(x)=25]$ therefore $25=\mathrm{a}^{2} \rightarrow \mathrm{a}=5 \quad$ so $\mathrm{f}(\mathrm{x})=5^{x}$

Example 2:

$$
\text { therefore } \frac{1}{8}=\mathrm{a}^{3} \rightarrow \mathrm{a}=\frac{1}{2}
$$

$$
\text { so } \mathrm{f}(\mathrm{x})=\left(\frac{1}{2}\right)^{x}
$$

See figure 2 and figure 3 in book for examples of transformations and an animations link that demonstrate transformations:

Figure 3

(a)

(b)

(c)

CLICK ON LINKS
 IN E-BOOK \rightarrow

\qquad

