4.1 NOTES: Calculating Compound Interest:

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

$$S_{n}^{n} = .05$$

$$C_{n}^{n}$$

$$S_{n}^{n} = .05$$

$$C_{n}^{n}$$

$$C_{n}^{n}$$

$$S_{n}^{n} = .05$$

$$C_{n}^{n}$$

$$C_{n}^$$

t = # of years

→See video in e-book for a further explanation of compound interest.

4.1 Notes: Exponential Functions

The **exponential function with base a** is defined for all real numbers **x** by:

 $f(x) = a^x$, where a > 0 and $a \neq 1$.

 \rightarrow See video in e-book for introduction about exponential functions and an exploration link.

The line y=0 (x-axis) is an asymptote and the y-intercept is at (0, 1).

Domain is $(-\infty,\infty)$ and Range is $(0,\infty)$

Calculate values and plot points to sketch a graph: Reminder: $3^{-2} = \frac{1}{3^2} = \frac{1}{9}$

 $f(x) = 3^x$

x

Writing an equation given the graph:

y + (2, 25) $(3, \frac{1}{8})$

Example 1:

Given: $f(x) = a^x$ and a > 0. From the graph x=2 and y=25 [same as f(x)=25] therefore $25 = a^2 \rightarrow a = 5$ so $f(x) = 5^x$ Example 2: (3, $\frac{1}{8}$) From the graph x = 3 and $y = \frac{1}{8}$ therefore $\frac{1}{8} = a^3 \rightarrow a = \frac{1}{2}$ so $f(x) = \left(\frac{1}{2}\right)^3$

See figure 2 and figure 3 in book for examples of transformations and an animations link that demonstrate transformations: Figure 3

